skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Monegro, Ronard Herrera"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Developing effective recycling pathways for polyolefin waste, enabling a move to a circular economy, is an imperative that must be met. Post-use modification has shown promising results in upcycling polyolefins, removing the limitation of inertness, and improving the final physical properties of the recycled material while extending its useful lifetime. Grafting of maleic anhydride groups to polypropylene is an established industrial process that enhances its reactivity and provides a convenient route to further functionalization and upcycling. In this work, maleic anhydride grafted polypropylene (PPgMAH) was hydroxylated, and subsequently cured with a diisocyanate to form a thermoset polyurethane (PU). The crystal structure (unit cell and lamellar structure) of the polypropylene (PP) was preserved in the PU. At room temperature, the PU showed high modulus due to the crystallization behavior of the PP; upon increasing the temperature above the melting temperature, the modulus decreased to a rubbery plateau, consistent with formation of a network. The resulting PU showed higher glass transition temperature and lower degree of crystallinity than its PP predecessor due to the crosslinked nature of the polymer. The mechanical integrity of the PU was maintained through several reprocessing cycles due to the melt processability enabled by the presence of a urethane exchange catalyst. This functionalization and upcycling route thus offers a promising alternative to repurposing PP waste, in which the creation of melt-processable thermoset polymers expands applications for the materials. 
    more » « less